ся позиционной, если значение цифры числа зависит от местоположения цифры в числе. В противном случае она называется непозиционной. Значение числа определяется по положению этих цифр в числе.
2. Представление чисел в ЭВМ. Формализованное понятие алгоритма
32-разрядные процессоры могут работать с оперативной памятью емкостью до 232-1, а адреса могут записываться в диапазоне 00000000 – FFFFFFFF. Однако в реальном режиме процессор работает с памятью до 220-1, а адреса попадают в диапазон 00000 – FFFFF. Байты памяти могут объединяться в поля как фиксированной, так и переменной длины. Словом называется поле фиксированной длины, состоящее из 2 байтов, двойным словом – поле из 4 байтов. Адреса полей бывают четные и нечетные, при этом для четных адресов операции выполняются быстрее.
Числа с фиксированной точкой в ЭВМ представляются как целые двоичные числа, и занимаемый ими объем может составлять 1, 2 или 4 байта.
Целые двоичные числа представляются в дополнительном коде. Дополнительный код положительного числа равен самому числу, а дополнительный код отрицательного числа может быть получен по такой формуле:
x = 10n – \x\, где n – разрядность числа.
В двоичной системе счисления дополнитель
2. Представление чисел в ЭВМ. Формализованное понятие алгоритма
32-разрядные процессоры могут работать с оперативной памятью емкостью до 232-1, а адреса могут записываться в диапазоне 00000000 – FFFFFFFF. Однако в реальном режиме процессор работает с памятью до 220-1, а адреса попадают в диапазон 00000 – FFFFF. Байты памяти могут объединяться в поля как фиксированной, так и переменной длины. Словом называется поле фиксированной длины, состоящее из 2 байтов, двойным словом – поле из 4 байтов. Адреса полей бывают четные и нечетные, при этом для четных адресов операции выполняются быстрее.
Числа с фиксированной точкой в ЭВМ представляются как целые двоичные числа, и занимаемый ими объем может составлять 1, 2 или 4 байта.
Целые двоичные числа представляются в дополнительном коде. Дополнительный код положительного числа равен самому числу, а дополнительный код отрицательного числа может быть получен по такой формуле:
x = 10n – \x\, где n – разрядность числа.
В двоичной системе счисления дополнитель
Навигация с клавиатуры: следующая страница -
или ,
предыдущая -