Поразительно: по ходу научно-технического прогресса, от механических секундомеров перешли сначала к кварцевым, а затем и к атомным часам, от землемерных лент перешли к лазерным дальномерам, а затем и к GPS-приёмникам – и только калориметры оказались совершенно незаменимыми в деле прямого определения тепловых эффектов. До сих пор калориметры служат своим пользователям верой и правдой: пользователи в них верят и думают, что с их помощью знают правду. А в средние века на них молились, берегли их от сглаза, и даже окуривали ладаном – что, впрочем, мало помогало. Вот, смотрите: исследуемый процесс протекал в стаканчике с теплопроводящими стенками, который находился внутри большого стакана, заполненного буферным веществом. Если при исследуемом процессе теплотворная материя выделялась или поглощалась, то температура буферного вещества, соответственно, повышалась или понижалась. Измеряемой величиной в обоих случаях являлась разность температур буферного вещества до и после исследуемого процесса – эта разность определялась с помощью термометра. Вуаля! Правда, быстро обнаружилось небольшое затруднение. Повторяли измерения при одном и том же исследуемом процессе, но с разными буферными веществами. И оказалось, что одинаковые веса разных буферных веществ, приобретая одно и то же количество теплотворной материи, нагреваются на разные количества градусов. Недолго думая, тепловых дел мастера ввели в науку ещё одну характеристику веществ – теплоёмкость. Это совсем просто: теплоёмкость больше у того вещества, которое вмещает больше теплотворной материи для того, чтобы, при прочих равных условиях, нагреться на одинаковое количество градусов. Стойте, стойте! Тогда, чтобы определить тепловой эффект калориметрическим способом, требуется з
Навигация с клавиатуры: следующая страница -
или ,
предыдущая -